ET 438 b Digital Control and Data Acquisition
Department of Technology

Lesson 16: State-Based Sequential Design

Learning Objectives

After this presentation you will be able to:

- Define the components of a state diagram
- Draw a state diagram that describes a sequential process
- Write Boolean state equations for a sequential process
> Convert Boolean equations into ladder logic rungs

State-Based Designs

Definitions
State - current operational mode of system
Examples: On/Off, Idle, Tank filling, dispensing product.
Conditions (inputs) - inputs required for leaving the current state and moving to another state

Examples: Coins inserted, button pressed, OL activated
Actions (outputs) - actions performed by system when the transition from one state to another take place

Examples: Start motor, turn on light, sound alarm.

State-Based Designs

When a set of inputs (conditions) become valid for leaving a state, the system is directed to the destination state

State Transition Diagrams

State transition diagrams allow designers to examine the interaction between desired conditions and find their logical relationships and sequence. Use in digital computer design

If Condition A true go to State 2
Else stay in State 1

If B true go to State 3 Else State 2

State Equations

Formal Definition:

Set
Conditions
Functions of state and inputs
$\operatorname{state}_{\mathrm{i}}^{+1}=\left(\operatorname{state}_{\mathrm{i}}+\sum_{\mathrm{j}=1}^{\mathrm{n}}\left(\operatorname{set}^{\left(\operatorname{state}_{\mathrm{j}}, \mathrm{I}\right)_{\mathrm{i}}}\right)\right) \cdot \sum_{\mathrm{k}=1}^{\mathrm{m}} \overline{\left(\operatorname{reset}^{\left.\left(\operatorname{state}_{\mathrm{i}}, \mathrm{I}\right)_{k}\right)}\right)}$

$$
\text { out }_{\mathrm{i}}=\mathrm{h}_{\mathrm{i}}\left(\text { state }_{1}, \text { state }_{2}, \ldots \text { state }_{\mathrm{N}}\right)
$$

Where:
state $_{i}=$ a variable that reflects state i is on
Reset
Conditions
Functions of state ${ }_{i}{ }^{+1}=$ next value of state variable out ${ }_{i}=$ desired outputs of state i $h_{i}()=$ output function of state variables $n=$ number of transitions into state i $\mathrm{m}=$ number of transitions out of state i $N=$ total number of system states $\mathrm{set}_{\mathrm{i}}=$ logical condition to set state variable i reset $_{i}=$ logical condition to reset state variable i^{i}

Example

Write the state equation for a motor starting control described in the state diagram below with the following input and outputs

Example

Boolean Equation to ladder logic diagram

Construct
Ladder

$\mathrm{X1}^{+1}=(\mathrm{X} 1+\mathrm{I}) \bullet \overline{\mathrm{I} 0} \bullet \overline{\mathrm{I} 2} \quad$ Substitute variable names

$\mathrm{X} 1=\mathrm{M}$
$10=$ PB1 Stop
I1 = PB2 Start I2 = OL Overload

Design Example: Reciprocating Motion Process

A work piece must travel back and forth on a conveyor. The location of the work piece is determined by two limit switches. When the location is detected control signal are sent to a reversing motor contactor. The machine is started and stopped from a local set of push button switches. Develop a ladder logic diagram to implement this control.

Design Example: Reciprocating Motion Process

Determine the inputs, outputs and states of system
Inputs: 10: press start
11: press stop
12: Table at reverse limit (1LS)
13: Table at forward limit (2LS)

Design Example: Reciprocating Motion Process

Assume machine starts at reverse limit. (1LS changes state)

Design Example: Reciprocating Motion Process

Detme set and reset condtions
Define 2 state variables X_{1} and X_{2}
$\operatorname{set}_{\mathrm{X} 1}=\mathrm{I} 0+\mathrm{I} 2 \cdot \mathrm{X} 2$

X_{2}	X_{1}	Condition
0	0	Off (So)
0	1	On-Forward $\left(\mathrm{S}_{1}\right)$
1	0	On-Reverse $\left(\mathrm{S}_{2}\right)$
1	1	Not allowed

$$
\operatorname{reset}_{\mathrm{x} 1}=\mathrm{I} 1+\mathrm{I} 3
$$

$$
\operatorname{set}_{\mathrm{X} 2}=\mathrm{I} 3 \cdot \mathrm{X} 1
$$

$$
\operatorname{reset}_{\mathrm{X} 2}=\mathrm{I} 2
$$

$$
\mathrm{X1}^{+1}=\left(\mathrm{X} 1+\operatorname{set}_{\mathrm{x} 1}\right)\left(\overline{\operatorname{reset}_{\mathrm{x} 1}}\right)
$$

$$
\mathrm{X}^{+1}=(\mathrm{X} 1+(\mathrm{I} 0+\mathrm{I} 2 \cdot \mathrm{X} 2))(\overline{\mathrm{I} 1+\mathrm{I} 3})
$$

$$
\mathrm{X}^{+1}=(\mathrm{X} 1+(\mathrm{I} 0+\mathrm{I} 2 \cdot \mathrm{X} 2))(\overline{\mathrm{I} 1} \cdot \overline{\mathrm{I} 3})
$$

$$
\mathrm{X} 2^{+1}=\left(\mathrm{X} 2+\operatorname{set}_{\mathrm{x} 2}\right)\left(\overline{\operatorname{reset}_{\mathrm{x} 2}}\right)
$$

$$
\mathrm{X} 2^{+1}=(\mathrm{X} 2+\mathrm{I} 3 \cdot \mathrm{X} 1)(\overline{\mathrm{I} 2})
$$

Outputs $\mathrm{X} 1=\mathrm{O} 0, \mathrm{X} 2=\mathrm{O} 1$

Design Example: Reciprocating Motion Process

Lesson 16_et438b.pptx
$2 C R=O o$ $3 C R=O_{1}$
lo=start
lı=stop
l2=1LS
$13=2 L S$

States With Prioritization

Systems with multiple entries and exits from a state require blocking of alternatives.

Prioritization Example

Write state equations using transitions

$$
\begin{array}{ll}
\mathrm{S}^{+1}=\left(\mathrm{S} 0+\mathrm{T}_{10} \cdot \overline{\mathrm{~T}_{12}}\right) \cdot \overline{\mathrm{T}_{21}} & \begin{array}{c}
\text { So blocked if } \mathrm{S}_{2} \text { is } \\
\text { active }
\end{array} \\
\mathrm{Sl}^{+1}=\left(\mathrm{S} 1+\mathrm{T}_{01}+\mathrm{T}_{21}+\mathrm{T}_{1}\right) \cdot\left(\overline{\mathrm{T}_{10}+\mathrm{T}_{12}}\right) & \\
\mathrm{Sl}^{+1}=\left(\mathrm{S} 1+\mathrm{T}_{01}+\mathrm{T}_{21}+\mathrm{T}_{1}\right) \cdot\left(\overline{\mathrm{T}_{10}} \cdot \overline{\mathrm{~T}_{12}}\right) & \begin{array}{l}
\text { Simplify using } \\
\text { DeMorgam's Theorem }
\end{array} \\
\mathrm{S}^{+1}=\left(\mathrm{S} 2+\mathrm{T}_{12}\right) \cdot \overline{\mathrm{T}_{21}} &
\end{array}
$$

Output Map

State	P	Q	R
So	0	1	1
S1	1	0	1
S2	1	1	0

Output Equations

$$
\begin{aligned}
& \mathrm{P}=\mathrm{S} 1+\mathrm{S} 2 \\
& \mathrm{Q}=\mathrm{S} 0+\mathrm{S} 2 \\
& \mathrm{R}=\mathrm{S} 0+\mathrm{S} 1
\end{aligned}
$$

End Lesson 16: State-Based Sequential Design

ET 438B Sequential Control and Data Acquisition
Department of Technology

